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Abstract

Training deep neural networks can be resources-consuming. The budget required is

increasing with the growth of dataset size. During the past ten years, many achieve-

ments are dedicated to accelerating the convergence speed with heuristic or theoretical

training procedures by arranging the order of training samples. However, we still need

the whole dataset to train the network and paying for a large dataset may not pay back

well if we can use a smaller subset to achieve an acceptable performance. In order

to reduce the number of training samples needed, we first adapt three existing meth-

ods, Patterns by Ordered Projections (POP), Enhanced Global Density-based Instance

Selection (EGDIS), and Curriculum Learning (CL), to reduce the size of two image

datasets, CIFAR10 and CIFAR100, for the classification task. Based on the analysis,

we present our main contribution: improved CL by proposing its two variations, the

Weighted Curriculum Learning (WCL) and the Boundary based Weighted Curriculum

Learning (BWCL). The WCL outperforms POP and EGDIS in terms of both classi-

fication accuracy and time complexity. Also, WCL and BWCL achieve comparable

performance compared with CL while keeping a portion of hard examples. Besides,

we design a trade-off framework for WCL to select a subset of samples according to

the acceptable relative accuracy.
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Chapter 1

Introduction

With the development of Convolutional Neural Networks (CNNs), many computer vi-

sion challenges have proven to achieve high performances on image datasets. Krizhevsky

et al. [25] designed an eight-layer CNN and outperformed the record in the ImageNet

Large Scale Visual Recognition Competition (ILSVRC2012) by about 9.4 per cent.

Three years later, the very deep CNN by He et al. [17, 18] surpassed human-level

performance on the same dataset. It is possible to train CNNs with hundreds of lay-

ers due to the increment of dataset size, robust initialisation methods, development of

GPU training frameworks, advanced regularisation skills, and network architectures

such as highway connection [18, 19]. These achievements made deep CNNs the dom-

inant choice for the image classification task. However, CNNs are not perfect. The

training process may need to evaluate all the images for hundreds of times to achieve

good accuracy in a typical workflow gradually. While deep architectures achieved high

accuracies, the large-scale datasets also caused CNNs both time-consuming and eager

for computing and storage resources.

In order to overcome these drawbacks, recent research developed many training

data arrangement procedures to accelerate the CNN convergence speed. These ap-

proaches typically fall into one of the two categories: select mini-batch samples 1

non-uniformly [37, 27, 21, 9] or rank the order by which samples are fed into CNNs

during training [5, 16]. Both methods need to evaluate sample classification scores. We

have two options on when to evaluate the classification scores: at each training step or

calculate once before the training process starts. We use the term Current Hypothesis
Method and Target Hypothesis Method to refer to these situations [16]. However,

we still need to train the whole training set or evaluate them during training.

1In our dissertation, we use the term samples to represent the data in datasets
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Chapter 1. Introduction 2

There are methods designed to reduce the number of training samples which have

structured features called instance selection algorithms [31, 3, 8, 34]. The typical ap-

proach is to select samples that can maintain the decision boundary of machine learn-

ing algorithms such as k-nearest neighbour (knn) [29]. However, to the best of our

knowledge, researchers have not developed an efficient pipeline to make them work

with image datasets and CNNs [39, 4, 6]. One reason is that images are not structural

data. The other reason is that these selection algorithms are not designed for CNNs.

Hence, we need to build a pipeline for these algorithms to be compatible with CNNs.

This project aims to establish an efficient pipeline to reduce the number of train-

ing samples needed for CNNs. We take the image classification task as an example in

particular. To do so, we will adapt typical instance selection algorithms and the target

hypothesis methods to reduce the size of training set for CNNs. Before CNNs became

popular, researchers tend to reduce the image dimensionality by transforming the im-

ages into feature vectors then classify these features with machine learning algorithms

such as SVM [33, 12]. Since these extracted features can be considered as structural

features, and the pre-calculated classification scores can reflect the sample classifica-

tion difficulties for CNNs, it is possible to achieve a better reduction performance, in

terms of classification accuracy and algorithm operation time.

In specific, we will extract the image feature vectors as a pre-processing step. The

existing instance selection algorithms are extended with the awareness of sample clas-

sification scores. Since there is no enough experience to guide us configure the algo-

rithms for CNNs, we plan to explore the behaviours first by visualising the selected

samples and train the subsets with the logistic regression method. After tuning the

hyper-parameters 2 and selecting the subsets on the feature vectors, we train CNNs

from scratch with corresponding images and report the relative classification accura-

cies 3. We then dive into the most suitable algorithm and build the trade-off framework,

which can guide researchers to balance the relative accuracy and the number of sam-

ples selected.

This dissertation is structured as follows:

Chapter 2: Background Research. We describe the necessary background to un-

derstand image classification and image feature extraction with CNNs. We briefly

mention the theory for current hypothesis methods. Moreover, we describe the imple-

2Hyper-parameter means the parameter that we can tune by hand
3Relative accuracy is defined as the test set accuracy of selected subset divided by that of the whole

training set.
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mentations of one target hypothesis method and two instance selection methods for

later evaluation. We also cover the CNN accuracy prediction method by training a

regression model with existing experiment results.

Chapter 3: Methods. We introduce the datasets and feature extraction procedures

used in the experiments. Based on the target hypothesis method described in Chapter

2, we propose two variations dedicated to CNNs. After that, we cover the experiments

to evaluate the five instance selection algorithms by extracting image features first then

run the instance selection algorithms on these feature vectors.

Chapter 4: Instance Selection Evaluation. We compare the instance selection al-

gorithms by selecting the same number of samples and report the test set accuracy.

We report our experiment results that our variations are more suitable for CNNs. The

linear relationship between the selected number of samples and the relative accuracy

provides a heuristic way to decide how many samples to select.

Chapter 5: Trade-off Framework. With the experiment data acquired in Chapter 4,

we build a simple framework that can predict the relative accuracy of a selected subset.

Chapter 6: Conclusion and Future Work. We finish this thesis with a conclusion

and a discussion about future work.



Chapter 2

Background Research

In this chapter, we begin with presenting the necessary background to understand the

CNNs for image classification and feature extraction task, training data arrangement

procedures, and instance selection methods, as well as other ideas required to under-

stand our trade-off framework. We start with the typical structure of CNNs and the

gradient descent training method. We then discuss the advanced training set arrange-

ment methods that can speed up the training procedure and outline their deficiencies

for our purpose. Next, we review the instance selection literature and present a CNN

instance selection pipeline - use the network pre-trained on ImageNet to extract low-

dimensional features and run the instance selection methods on extracted features. Fur-

thermore, we cover the existing trade-off framework BlinkML [32] in the context of

maximum-likelihood estimation machine learning algorithms and explain why it is not

suitable for the deep neural network. Finally, we present TAPAS [20], which is an

accuracy predictor for the deep neural networks without training and has several prop-

erties that make it useful to build our trade-off framework.

2.1 Classification and Feature Extraction with CNNs

Classification is a kind of machine learning task which learns the mapping between

visual inputs and output labels from a set of well-labelled training samples. The visual

data can be images, videos or even 3D models [38]. The output scores after a softmax

operation can be considered as the probability for a given image belonging to each

class. We use the symbol P(c|x,θ) to represent the probability that sample x belongs

to true class c. The scores of true classes also reflect the difficulties for CNNs to

classify the samples correctly. Higher scores indicate the samples are easier to classify

4



Chapter 2. Background Research 5

than lower score samples. CNNs are particular tools that can solve the classification

task. They are a set of chained operations with trainable parameters. These parameters

define the actual input-out mapping. For this reason, we use the symbol f (x|θ) to

represent the output score of true class predicted by the CNNs, which takes the input x

with a particular parameter set θ.

Figure 2.1 gives a basic CNN structure which is optimised to classify images as cats

or dogs. It contains two convolutional (Conv) layers, one max-pooling layer and one

fully connected (FC) layer. The last FC layer is a multi-class logistic regression model

which maps the outputs of the max-pooling layer to the classification scores. From

this perspective, we can divide the CNN structure into two parts: feature extraction

part and logistic regression part. The feature extraction part performs as a black box

which ideally transforms the input images to points in a lower-dimensional, linearly

separable space.

Figure 2.1: A basic CNN structure to classify images between cats and dogs. The

inputs of the last FC layer are the extracted lower-dimensional features of the input

images. These features should be linearly separable to achieve a high classification

accuracy.

We use the symbol y to represent the ground truth of the input sample x. The equa-

tion L( f (x|θ),y) represents the loss function which measures the difference between

the predicted output and the ground truth label. Then the training process is to find the

parameter set θ∗, which minimise the average loss of the whole training set as follows:

θ
∗ = argmin

θ

1
N

N

∑
i=1

L( f (xi|θ),yi) (2.1)

where the symbol N stands for the number of samples in the training set in our dis-

sertation. This equation turns the training process into an optimisation problem. Differ-

ent from machine learning algorithms like logistic regression and SVM, the equation

2.1 is non-convex thus cannot be solved analytically [14, p. 304]. Several techniques

have been developed to solve this problem with the requirement that the loss function



Chapter 2. Background Research 6

L(., .) is differentiable. The basic one is called stochastic gradient descent (SGD) which

updates the parameters with the partial derivatives of a randomly selected sample. At

each step, the new parameter is calculated with:

θt+1 = θt−η
∂L( f (x|θ),y)

∂θt
(2.2)

and η is the step size. A simple variant of SGD is mini-batch gradient descent which

divides the training set into disjoint subsets and averages the gradients within the subset

before updating the parameters:

θt+1 = θt−η
1
M

M

∑
i=1

∂L( f (xi|θ),yi)

∂θt
(2.3)

where M is the batch size of the subset. For CNNs, batch size M is often smaller than

the training set size N because it takes too much memory to fit in the whole dataset.

Usually, we use the value 128 or 256 as the batch size.

The feature extraction method mentioned above is to train a network first then take

the inputs of the last FC layer. In practice, this is not efficient nor effective. If we

have an extensive training set, it takes us too many resources to train them well [10].

If we have a small training set, it may be hard to acquire high-quality features. An

alternative method is to extract the features with a pre-trained network. Typically we

use the weights trained on ImageNet [35] because this dataset is large enough and the

pre-trained network can extract good enough features for other datasets [23].

2.2 Training Set Arrangement

Since the mini-batch gradient method trains the network with a subset of samples at

each step, how to select the samples becomes a problem in the deep learning literature.

Instead of uniform sampling, many researchers proposed to select the samples with

sample weights based on different criteria. In this section, we plan to introduce the

current hypothesis methods and target hypothesis methods. Current hypothesis meth-

ods measure the samples based on the parameter set θt at step t while target hypothesis

methods are based on the final optimal parameter set θ∗.

2.2.1 Current Hypothesis Methods

Different authors have proposed a variety of current hypothesis methods. Specifically,

in self-paced learning [26, 27, 30], active bias learning [9], and hard example mining
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[37, 28], the batch selection process is based on the classification scores f (x|θ,y).
For importance sampling methods, the process is based on the gradient norm for each

sample, |∂L( f (xi|θ),yi)
∂xi

|. We finish this section by briefly explaining the theories of these

approaches 1.

2.2.1.1 Difficulty Based Methods

Self-paced learning tends to select easy samples which have a high classification score

by injecting a pace function into the optimisation target function 2.1:

θ
∗ = argmin

θ,v

N

∑
i=1

viL( f (xi|θ),yi)+λ

N

∑
i=1

vi (2.4)

where v is the sample weight calculated by the pace function. The pace function can

be either a simple step function [26] or a more complicated dynamic function which

changes while training [27] as long as it can assign weight 0 to samples. By minimising

the target function 2.4, this method would zero out hard examples which have higher

loss values, thus keeps only the easy samples. With self-paced learning, the trained

network can be more robust to outliers [30].

A potential problem of self-paced learning is that it would gradually increase the

loss of hard examples [26]. As a consequence, the trained network may not achieve

the desired accuracy. The possible solution is to use the active bias learning method,

which is designed to select the uncertain samples whose classification scores fluctuate

near the decision threshold. Chang et al. proposed and evaluated many self-paced

methods, and the representative one is SGD Sampled by Threshold Closeness (SGD-

STC) [9]. It records the historical average classification probability P̄ for each sample.

The sample weights are calculated with an equation that is proportional to (1− P̄)× P̄

whose maximum point is at P̄ = 0.5. However, the problem is that we need extra space

and computation to maintain historical scores.

Hard example mining is yet another heuristic method aims at maximising the con-

vergence speed by extending the self-paced learning method [37]. The algorithm pro-

posed by [28] ranks the samples based on the latest computed classification scores

in descending order. At early training stages, the algorithm chooses easy samples just

like self-paced learning. After a thorough training process, the algorithm tends to select

hard examples which have low classification scores. In this way, the trained classifier

may be able to achieve higher accuracy than self-paced learning. The downside is that

1We use the term method, algorithm, approach interchangeably in this dissertation
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training with hard examples can affect the decision boundary. As a consequence, the

network may forget learned features previously and reduce the accuracy.

2.2.1.2 Importance Based Methods

Although experiments in the cited resources above have proved that difficulty based

methods can surely speed up the training process and may achieve even higher accu-

racy, the lack of mathematical prove could lower the interests of researchers. On the

contrary, importance based methods raise from the profound mathematical demonstra-

tion [42] and are more reliable. Despite the elaborate derivation, the most important

conclusion is that the optimal weight distribution is proportional to the per-sample

gradient norm.

The challenge is that computing the per sample gradient norm |∂L( f (xi|θ),yi)
∂xi

| is in-

tractable. In the past few years, many researchers have adapted their approximate

methods to speed up the process. The most convincing one is proposed by Katharopou-

los et al. which derives an upper bound of the gradient norm [22],

|∂L( f (xi|θ),yi)

∂xi
| ≤ |h(xi)| (2.5)

that h(xi) is the upper bound function depends on the last layer pre-activation outputs.

With this equation, we can compute the largest sample gradient after a single forward

propagation.

The benefit of current hypothesis methods is that the sample weights vary with

training step. Thus the chosen samples at each step can reflect the current capacity of

the network. However, because evaluating the whole training set is time-consuming,

we often select a subset uniformly first and then select the samples within the subset.

As a result, we can only get a sub-optimal choice which is worse than the theory

performance.

2.2.2 Target Hypothesis Methods

Compared with the current hypothesis methods, target hypothesis methods arrange

the training set based on the possible final classification scores of the network thus

the weights of the samples are pre-defined. They will not change during the training

process [5]. For this reason, the target hypothesis method is more suitable to reduce the

size of the datasets. To our knowledge, Curriculum Learning (CL) is the only method

with these properties, as stated by Hacohen et al. in 2019 [16].
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Similar to hard example mining, CL trains the network with easy samples first.

Rather than switching to difficult samples, CL adds difficult samples into the training

set. Eventually, the subset would contain all the training samples. The classification

scores are measured with a pre-trained network or with a linear classifier such as SVM

[16]. The major concern is that CL weights may not reflect the sample classifica-

tion difficulties of the chosen CNN. Considering the reality that all methods described

above are sub-optimal in practice, we choose to accept the drawbacks in this project.

The Python style 2 pseudo-code of CL is shown in Algorithm 1. In this dissertation,

we assume the type of input feature vector is NumPy array. We make CL to select a

given number of samples only once in line 5.
Algorithm 1: CL

Data: image feature vectors M

Input: number of samples to select m, classification score for each sample

scores, number of classes n

Output: selected sample index by CL

1 selected idx list = [] ;

2 foreach class label L do
3 scores = all sample scores with label L ;

4 idx list = sort by value(scores) ;

5 selected idx list.append(idx list[: floor(m/n)]) ;

6 end
7 return selected idx list ;

2.3 Instance Selection Algorithm

Most instance selection methods are designed to reduce the size of the structured

dataset for machine learning algorithms such as SVM and logistic regression. The

assumption is that we can recover the decision boundary 3 with fewer samples. Ac-

cording to the thorough review [31], the instance selection methods can be divided into

two categories: wrapper and filter. Wrapper methods select the subset samples based

on the classification accuracy. The model knn [3] is a common choice to evaluate the

classification quality. Misclassified samples will be selected because they can con-

tribute to the knn accuracy. On the other hand, filter methods select samples without

2We use Python objects and their functions such as .append(). All variables ended with the postfix
list are Python list objects.

3Decision boundary is the line separates samples from different classes
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repetitive evaluation. They tend to select samples near the boundary between different

classes with the assumption that these samples can guide the classifiers to recover the

position of the original decision boundary [34, 29]. Although the wrapper methods

could achieve higher accuracy because they are classifier dependent, they tend to cost

too much time because they need to evaluate the accuracy multiple times. From this

perspective, filter methods are more suitable for our experiments. In this section, we

take two typical filter algorithms, POP and EGDIS, to introduce their mechanisms.

2.3.1 Patterns by Ordered Projections

The POP algorithm [34] is designed to select boundary samples by removing inner

samples which are far from the class contours. Rather than calculating the sample

positions in the high dimensional feature space, Riquelme et al. simplified this process

by projecting the samples onto each feature dimension. To be precise, we decide if a

sample is inner or not in each feature space. We use the term pure inner samples to

refer to samples which are inner in all feature dimensions.

Algorithm 2 describes the POP pseudo-code. we use the variable weakness to

count the number of times that a sample is inner. In each feature dimension, the func-

tion sort by value first sorts the samples in descending order. Since our extracted

features are continuous values, we need an extra hyper-parameter equal tolerance(et)

to decide when two feature values are equal. Then the function resort by label scans

the samples and record the start label of consecutive samples with the same value and

detects the label of the first sample with a different value. Then the function sorts the

scanned samples by moving samples with the same labels as the two recorded to the

start of the list and the end of the list. After that, we scan all samples one more time to

detect label changes and mark all samples as inner except the two at the beginning and

the end of the scanned list. Figure 2.2 depicts a typical work flow of POP.



Chapter 2. Background Research 11

Figure 2.2: The typical workflow of POP after sorting the samples in descending order.

Samples with labels 1 and 3 are not inner samples because there are only two of them.

Algorithm 2: POP for continuous features
Data: feature vectors M

Input: weakness threshold wt a, equal tolerance et

Output: selected sample index by POP

1 weakness = np.zeros(len(M)) ;

2 foreach feature dimension Fj = M[:, j] do
3 idx list = sort by value(Fj) ;

4 idx list = resort by label(Fj, et, idx list) ;

5 foreach idx in idx list do
6 if M[idx, j] is inner then
7 weakness[idx]+ = 1;

8 end

9 end

10 end
11 return np.argwhere(weakness < wt) ;

aWeakness threshold is equal to or smaller than the number of dimensions.

2.3.2 Enhanced Global Density Based Instance Selection

Similar to POP, EGDIS [29] aims at selecting boundary samples as well. Instead of

removing inner samples, EGDIS selects the boundary samples which are close to other

classes. It also selects samples at the densest area to capture some inner samples.

The pseudo-code is shown in Algorithm 3. In order to find these samples, the function

kneighbours returns the distances and labels of the k nearest neighbours. Then for each
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sample, we check how many neighbours are from other classes and save the value to

variable irrelevance score. If the score is greater than or equal to the integer part of

k/2, we record this sample to the boundary idx list. If not, function density calculates

the global density values:

density(xi) =−
1
N ∑

j 6=i
distance(xi,x j) (2.6)

for the sample and its k neighbours. We add the sample to the densest idx list if its

density value is the highest compared with its k neighbours. According to the original

paper, EGDIS performs better with global density function in terms of reduction rate
4. However, the computation time increases with the number of samples in the dataset.

We will explore possible solutions in Chapter 3.
Algorithm 3: EGDIS

Data: feature vectors M

Input: number of neighbourhoods k

Output: selected sample index by EGDIS

1 boundary idx = [] ;

2 densest idx = [] ;

3 neighbour distance list,neighbour index list = kneighbours(M,k) ;

4 for i in range(len(neighbour index list)) do
5 neighbour index = neighbour index list[i, :] ;

6 irrelevance score = irrelevance(neighbour index) ;

7 if irrelevance score is greater or equal to floor(k/2) then
8 boundary idx.append(k) ;

9 else
10 if density(M[i]) is larger than density(M[neighbour index]) then
11 densest idx.append(i)

12 end

13 end

14 end
15 return np.union1d(boundary idx,densest idx) ;

4Reduction rate is the percentage of samples deleted
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2.4 Trade-off Framework

The main drawback of the instance selection algorithms is that we cannot control how

much data to select nor the minimum accuracy 5 that we can accept. Although there

is one trade-off framework published by Park et al. [32] called BlinkML, it can only

work with for machine learning algorithms which can be optimised by the maximum

likelihood method. Therefore, to work with CNNs, we need to build a new trade-off

framework. We measure how the test set accuracy is affected by defining the relative

accuracy as below:

Relative accuracy =
Test set accuracy by training the selected subset

Test set accuracy by training the whole training set
(2.7)

In order to build the framework, the primary challenge is to find the relationship

between required relative accuracy and the number of training samples needed. How-

ever, this is not straightforward because the optimisation of CNNs for classification

tasks can be considered as a non-convex problem in most cases [15, p. 114]. It is

hard to get the final accuracy without a long time training. Some second-order method

could find the zero gradient point, such as Newton’s method [41]. However, they are

still prone to local minimum points and do not scale well to large CNNs [15, p. 310].

For the reasons mentioned above, we tend to investigate experimental methods rather

than analytical methods.

In 2019, Istrate et al. published a paper aiming at predicting the accuracy with-

out training the networks [20]. They built a Lifelong Database of Experiments (LDE)

which stores a massive amount of training experiments on many CNN structures and

datasets. When a new dataset is given, the framework TAPAS first train the data with a

small probe CNN [36] for five epochs. The accuracy is recorded as the Dataset Char-

acterisation Number (DCN). TAPAS then fetches experiments with similar DCN from

the LDE. With these history data, a regression model is trained, which takes the net-

work structure and DCN as inputs to predict the classification accuracies. Although it

is not realistic for us to collect enough data for such a framework, TAPAS provides a

working example that it is possible to build the trade-off framework based on experi-

ment histories.

5Here we assume that reduce the number of samples would affect the classification accuracy, which
is true from our CNN experiments.



Chapter 3

Methods

This chapter aims at describing the experiment detail to evaluate instance selection al-

gorithms. We begin by presenting the experimental datasets, CIFAR10 and CIFAR100

[24], along with the image feature extraction process. Next, we adapt the two instance

selection algorithms, POP [34] and EGDIS [29], overviewed in Chapter 2.3, together

with CL [16] described in Chapter 2.2.2, to propose two instance selection methods

for CNNs. We name the two methods Weighted Curriculum Learning (WCL), based

on CL scores and Boundary Based Weighted Curriculum Learning (BWCL), based on

the EGDIS selected boundary instances. After that, our work is focused on the com-

prehensive evaluation of these methods. In order to understand the behaviour of these

algorithms, we first visualise the instance selection geometry patterns with CIFAR10.

Then we describe the model fitting procedure for the logistic regression algorithm to

choose the hyper-parameters. Finally, we extend the selection pipeline to deep learning

method with the particular network, DenseNet121 [19]. Figure 3.1 gives the pipeline

overview of this project. The trade-off framework is described in Chapter 5 because it

is built on the evaluation results.

Figure 3.1: Overview of the data reduction pipeline.

14
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3.1 Datasets and Image Feature Extraction

We choose to use CIFAR10 and CIFAR100 [24] as our experimental datasets which

contain 6,000 and 600 tiny images per class respectively. Their image size is 32×32.

An advantage of CIFAR is that they are plentiful in the number of images and tiny

in the size of images. With CIFAR datasets, we could train the network faster, thus

explore the reduction rate for a broader scale within the limited period. Another benefit

is that CIFAR datasets can reflect the performance of instance selection algorithms for

both simple dataset and hard dataset in term of classification accuracy. According to

Kornblith et al. [23], the test set results indicate that CIFAR10 is very easy to classify

and CIFAR100 is as difficult as other high-resolution datasets such as the Describable

Textures Dataset (DTD) [11], Food-101 [7]. These features could gain us thorough

and representative evaluation results with limited compute resources.

We performed the feature extraction task after scaling up the image size to 331 and

transformed the images into range 0 to 1 by dividing 255. The goal was to provide

structural features for the instance selection algorithms. We did this job with the pre-

trained NasNetLarge [43] because Kornblith et al. [23] have evaluated the extracted

features, and the quality is good enough. Their experiments show that the classifica-

tion scores with simple logistic regression are very close to the state-of-art classifica-

tion scores with CNNs. In order to simplify the implementation, we chose to use the

Keras implemented NasNetLarge network downloaded from TensorFlow Hub, which

is designed to get feature vectors from images [2]. However, the original shape of the

feature vector is 4032, and it would take a longer time to run the instance selection al-

gorithms. To speed up the selection process, we trained another network with two FC

layers. The depth of the first FC layer is 128, and we took the outputs as compressed

feature vectors. After training these two layers, the test set accuracies are reported as

the baseline performance for logistic regression experiments. Figure 3.2 shows the net-

work structure described above. We also trained a batch normalisation layer after the

128-D FC layer to limit the feature ranges. This process ensured that dimensions with

a wider range would not dominate the Euclidean distance between two vectors. The

KNN based algorithm, EGDIS, could work better by weighting the feature dimensions

equally.
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Figure 3.2: Network structure to compress the extracted feature vectors from 4032-D to

128-D. The compressed features are taken from the outputs of the first FC layer.

3.2 Instance Selection Algorithms for CNNs

Before presenting the evaluation plans, it should be noted that the algorithms described

in Chapter 2 are not perfect. First of all, POP and EGDIS are not deep learning ded-

icated algorithms so the CNNs may not work well with selected samples. Also, al-

though CL is a target hypothesis algorithm, only keeping easy samples may limit the

highest performance that the network could achieve. Therefore, our first contribution

is to enhance CL with the ability to contain a proportion of relatively difficult samples.

We followed the requirement in [16] to select balanced class subsets and proposed two

variations:

1. Weighted Curriculum Learning, which selects samples with the probabilities

proportional to classification scores.

2. Boundary Based Weighted Curriculum Learning, which selects a proportion of

the EGDIS boundary samples first then fill in the subset with WCL selected

samples.

3.2.1 Weighted Curriculum Learning

In order to make CL select hard examples as well, we normalised the classification

scores as the survival probabilities. By dividing the sample score to the sum of all

scores, the sum of all normalised scores will be one so that we can treat them as a

probability. In this way, the samples with higher classification scores would have a

higher chance to be selected. Because we only selected the subset once, we should be
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able to achieve higher accuracy if the network is powerful enough to learn from these

hard examples. The advantage is that WCL is a self-adaptive algorithm, which can

adjust the selection pattern based on how hard a dataset is. For easier datasets, WCL

would select more simple samples, and for harder datasets, WCL tends to mine more

hard samples. However, if the network is not capable of handling these hard examples,

then the test accuracy may decay. Algorithm 4 describes the working flow in pseudo-

code. The only difference compared with Algorithm 1 is the weighted selection process

in line 4 and 5.
Algorithm 4: WCL

Data: feature vectors M

Input: number of samples to select m, classification score list for each sample

scores, number of classes n

Output: selected sample index by WCL

1 selected idx list = [] ;

2 foreach class label L do
3 scores = all sample scores with label L ;

4 scores = scores / np.sum(scores) ;

5 idx list = choose floor(m/n) samples based on scores ;

6 selected idx list.append(idx list)) ;

7 end
8 return selected idx list ;

3.2.2 Boundary Based Weighted Curriculum Learning

While the score distribution of WCL selected samples can reflect the difficulty of a

dataset, it cannot guarantee to select enough hard examples for the network to recog-

nise the image patterns. Also, we planed to explore how the hard samples may affect

CNN performance. Therefore, we proposed the Boundary Based Weighted Curriculum

Learning to tune the number of difficult samples in the selected subset. The BWCL

pseudo-code is shown in Algorithm 5. We use the parameter p to control how much

EGDIS boundary samples to keep for each class. After selecting the required amount

of boundary samples randomly, BWCL calls WCL to choose the rest samples from

non-EGDIS boundary sample list.
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Algorithm 5: BWCL
Data: feature vectors M

Input: number of samples to select m, classification score for each sample

scores, number of classes n, EGDIS boundary sample index list

egdis boundary index, percent of boundary to select p

Output: selected sample index by BWCL

1 selected idx list = [] ;

2 foreach class label L do
3 scores = all non-EGDIS boundary sample scores with label L ;

4 egdis boundary index L = all EGDIS boundary sample index with label L

;

5 egdis idx = choose floor(m/n × p) samples from egdis boundary index L ;

6 selected idx list.append(egdis idx)) ;

7 scores = scores / np.sum(scores) ;

8 idx list = choose floor(m/n× (1-p)) samples with WCL from variable

scores ;

9 selected idx list.append(idx list)) ;

10 end
11 return selected idx list ;

3.3 Evaluation Designs

We designed the following experiments to evaluate the performance of the chosen three

instance selection algorithms as well as the two proposed algorithms:

1. We extracted the feature vectors for CIFAR10 and CIFAR100. We visualised the

extracted features with t-SNE [40].

2. We took CIFAR10 as an example to explore the intrinsic behaviours and extrac-

tion time.

3. We reported the test set accuracy by training the selected subsets with a logistic

regression model.

4. We transferred the experience gained form logistic regression experiment to

evaluate the algorithm performance with the particular network, DenseNet121.
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Instance Selection Evaluation

We tested five algorithms to reduce the number of training samples for CNNs in this

Chapter. To help the readers get the main results, we summarised our results before

diving into the experiment details. First, all five algorithms are efficient for logistic

regression classifier. POP is the most suitable one because it is fast and can achieve

higher relative accuracy than the other four algorithms. For CNNs, we should choose

CL or WCL for the reason that they do not need extra calculation and can achieve

higher relative accuracy than BWCL.

4.1 Experiment 1: Feature Extraction

The python version CIFAR10 and CIFAR100 datasets are downloaded from the official

website with pre-defined training and test sets [24]. In order to prevent overfitting, the

training set was randomly split into training and validation sets with the ratio 8:2. We

got 40,000 training samples, 10,000 validation samples and 10,000 test samples for

both datasets. To speed up the experiments, we started by extracting the image feature

vectors with a single forward propagation before training the FC layers.

All trainable parameters of the two FC layers were initialised by the Xavier uni-

form method [13]. After each epoch, we reported the validation accuracy and kept a

record of the model parameters, which achieved the best validation accuracy so far. We

scheduled two training stages to approach the optimal classification accuracy. First, we

performed 500 training epochs with step size 0.01 then decreased it to 0.001 for an-

other 500 epochs. After each training stage, the recorded parameters were loaded. The

final held-out test set accuracy for CIFAR10 is 0.9258 and for CIFAR100 is 0.7444.

Finally, we compressed the extracted 4032-D feature vectors with the 128-D FC layer.

19
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We further took a closer look at the compressed features by projecting them down

to two-dimensional vectors with t-SNE [40] which maintained the relative distance be-

tween samples. The plots are shown in Figure 4.1. Different colours represent different

classes of samples. First of all, the network transformed the images into blobs. Ide-

ally, vectors from the same class should be closer to each other. This situation is true

especially for CIFAR10. Also, the quality of these compact blobs reflects the classifi-

cation accuracy. Strays far from the right cluster would be misclassified by the logistic

regression model, thus lower the classification accuracy.

Furthermore, the boundaries between different classes are not always clear. Some

blobs are close to each other thus the classification accuracy is sensitive to slight vari-

ations of the boundary. This effect is more obvious if there are more samples for each

class. The close distance between blobs partly explains the rapid vibration of the CI-

FAR10 validation accuracy curve shown in Figure 4.2(a). We can widen the distance

between adjacent blobs by fine-tuning the pre-trained feature extraction network and

achieve a higher classification score [23]. However, since we want to minimise the

pre-processing time required, we omitted this step and stayed with the sub-optimal

compressed features.

(a) CIFAR10 (b) CIFAR100

Figure 4.1: Visualisation of extracted features with the t-SNE algorithm.We can see that

CIFAR10 plot is more discriminative.

In addition, we compared the training process of the two datasets in Figure 4.2.

Across the two training stages, CIFAR10 converges faster than CIFAR100, but it starts

to overfit earlier. The green line indicates that we could reduce the number of epochs
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in the first training stage by half and leave the mining job at the second stage.

(a) CIFAR10 (b) CIFAR10

(c) CIFAR100 (d) CIFAR100

Figure 4.2: The training history of CIFAR10 and CIFAR100. The left column is the first

500 epochs and the right column is the second 500 columns. The green line represents

the best validation epoch.

Finally, we also visualised the classification score distributions in Figure 4.3. As

observed from the quality of blobs plotted in Figure 4.1, CIFAR10 samples tend to

achieve higher classification scores around 0.9, while CIFAR100 samples are spread

across the range below 0.9. A conclusion is that samples from CIFAR100 are harder

to classify correctly. For this reason, we may need more samples for CIFAR100 to

achieve a similar relative accuracy compared with CIFAR10. The distributions also

suggest that instance selection algorithms may be less efficient for datasets with more

classes and lower classification accuracies. We will discuss the algorithm performance

further in Section 4.3 and 4.4.
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(a) CIFAR10 (b) CIFAR100

Figure 4.3: Classification score distributions. The X axis is the sample score and the Y

axis is the count of samples.

4.2 Experiment 2: Intrinsic Behaviour

Obtaining the discriminative t-SNE plots, we assumed the FC layers to have learnt high

quality compressed features. In this experiment, we tried to get an understanding of

the intrinsic behaviours of these data reduction algorithms by visualising the selected

CIFAR10 samples with red points. We managed to explain the behaviours with the

answers to two questions:

1. What are the geometrical distributions of the selected samples?

2. What are the classification score distributions of the selected samples?

For each algorithm, the selection behaviours were further explored by tuning the

hyper-parameters. We chose to use CIFAR10 for the reason that the quality of t-SNE

projected blobs is more discriminative than CIFAR100 so that we can understand the

behaviours easily.

First of all, we presented the POP selected samples by adjusting the equal tolerance

of the resort by label function described in Algorithm 2. For each tolerance choice,

we removed only pure inner samples whose weakness values are 128. Figure 4.4

depicts that with proper threshold setting such as et = 1, we can select most samples

along the blob contours as desired. Also, from Figure 4.4(a) and 4.4(b), we observed a

trend to select samples closer to the boundary between two adjacent blobs rather than

cover the whole contours. This behaviour can guide linear classifiers to build proper

decision boundaries. Another advantage of POP is fast computation speed. It took us

33.27 seconds on average to get the result. However, POP was designed to process

integer features in the original paper. It is not easy to choose the suitable tolerance
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(a) et=1, 8701 samples, 33.3s (b) et=0.5, 14111 samples, 29.7s (c) et=0.1, 31966 samples, 36.8s

Figure 4.4: POP selected samples by tuning the equal tolerance. The second row is the

corresponding score distributions which are similar to the dataset score distributions in

Figure 4.3.

value and keep just enough samples. Our experiments indicated that the number of

samples far from the boundary decreases much faster than expected by increasing the

tolerance value. One possible reason is that we normalised the compressed features,

and the value range is too compact. As a consequence, POP is hard to use for image

datasets.

The second algorithm we explored is EGDIS by tuning the hyper-parameter k of

the knn classifier. Figure 4.5 presents how the selection pattern varies with k values

3, 5, and 7. Our first discovery is that EGDIS tends to select all misclassified sam-

ples together with samples surrounding them. Compared with Figure 4.1, only a few

samples still exist in different colours. Also, by increasing the value of k, fewer inner

samples and boundary are selected. To explain these results, we need to know how

EGDIS works with hyper-parameter k. In short, higher k values require boundary sam-

ples to have more neighbours from different classes. Based on this mechanism, we

can infer that most misplaced samples are alone and surrounded by correctly classified

samples. For these isolated misclassified samples, they would be considered as bound-

ary samples and have enough number of neighbours to be selected. For samples near

the boundary, fewer samples will be qualified, and only those closely contacted with

other blobs would be selected. For dense samples near isolated misplaced points, some

of them may be categorised as boundary samples and would not be selected anymore

with an increase of k.
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(a) k=7, 2799 samples, 14min 27s (b) k=5, 3483 samples, 15min 7s (c) k=3, 5966 samples, 14min 56s

Figure 4.5: EGDIS selected samples by varying the hyper-parameter k. The score

distributions show that EGDIS selects samples from both high score region and low

score region.

The drawback of EGDIS is the global density calculation which computes the dis-

tance between all training samples. In our experiments, it took us on average 14 min-

utes 50 seconds to get all the selected samples, and we only need about 12 seconds

to select the boundary samples. Figure 4.6 shows the score distribution of EDGIS

selected boundary samples with k = 3. Compared with the second column of Figure

4.5(c), the main difference is the lack of high score samples. Therefore, if we choose

to select higher score samples from the score list, we can combine them with EGDIS

selected boundary samples and get a similar EGDIS score distribution within about 20

seconds. We will mention this topic in the next few paragraphs.

(a) Score distribution (b) Selected samples

Figure 4.6: EGDIS boundary score distribution and selected samples.
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Next, we visualised the selection preference of CL in Figure 4.7. We selected

different percentages of samples, and the selection pattern is distinct from POP and

EGDIS. We can see that CL tends to select only high score samples, and these samples

are lying in the opposite direction as the EGDIS boundary samples. This result is

what we expected because samples far from the decision boundary would have high

scores for the linear classifier. From the score distributions, we can see that all selected

samples are easy to classify for deep learning. This discovery reminds us to combine

these high score samples with EGDIS boundary samples. From Figure 4.7 and 4.6, we

can construct the bound of the blobs. However, the downside is that no inner samples

are selected, and the borders are not complete. We can not capture the whole shape of

the blobs, and the results are more like two isolated blobs for each class. With a linear

regression model, the boundary cannot be recovered precisely so we may get lower

accuracy.

(a) P=10%, 4000 samples (b) P=30%, 12000 samples (c) P=50%, 20000 samples

Figure 4.7: CL selected samples by tuning the percent of samples to select.

Rather than selecting only the top score samples, we proposed WCL to randomly

select samples within each class based on the sample scores. The results are shown in

the first row of Figure 4.8. Although most samples are selected from the high score

regions, there are some samples selected from the lower score regions. The problem is

that fewer samples near the EGDIS boundary are chosen. The boundary between close

blobs are blurry thus we cannot guarantee the performance.
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(a) P=10%, 4000 samples (b) P=30%, 12000 samples (c) P=50%, 20000 samples

Figure 4.8: WCL selected samples by tuning selection percentage. The first row we use

weighted sampling method, the second row we use EGDIS boundary based method.

Therefore, we combined both WCL and EGDIS selected boundary samples to pro-

pose the method BWCL. Compared with EGDIS, our BWCL can both get a similar

score distribution as well as recover the shape of blobs. However, due to the ran-

domness during selection, we cannot guarantee to select the same datasets each time.

This characteristic may cause the classification accuracy unstable for machine learning

models. We plotted the score distributions in Figure 4.9. We found that the score distri-

bution of WCL is similar with the score distribution of the whole dataset in Figure 4.3

while by selecting a close amount of samples, BWCL score distributions are similar

with EGDIS in Figure 4.5(c).



Chapter 4. Instance Selection Evaluation 27

(a) P=10%, 4000 samples (b) P=30%, 12000 samples (c) P=50%, 20000 samples

Figure 4.9: WCL and BWCL score distributions by tuning selection percentage. The

first row we use WCL, the second row we use BWCL.

4.3 Experiment 3: Logistic Regression

For more comprehensive evaluation results and inspired by [20], we manually syn-

thesised two CIFAR100 subsets and filled in the classification gap between CIFAR10

and CIFAR100. Between 10 classes to 90 classes with gap 10, we choose to build

nine subsets with by selecting the samples from the required number of classes. For

each required classes, we randomly did the job five times and trained them to conver-

gence with the logistic regression model. The box plot is shown in Figure 4.10. We

chose 40 classes and 20 classes as the number of our new synthesised datasets, with

test accuracy 0.78925 and 0.853. They have 8,028 samples and 16042 samples respec-

tively. Then we repeated the feature compression process described in Section 4.1 to

compress the extracted features. The final test accuracy is 0.8065 and 0.8745. In our

reported accuracy below, we used CIFAR20 and CIFAR40 to refer to these synthesised

datasets.
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Figure 4.10: The test set accuracies of CIFAR100 subsets. Horizontal axis is the num-

ber of classes selected. Vertical axis is the accuracy score. For each selection, we

randomly choose the classes for five times and report the accuracy with logistic regres-

sion model.

Our first discovery is that it is hard to select the right amount of subsets with POP

because the number of samples with weakness 128 is very low for all datasets except

CIFAR10. Even for equal threshold 1, the number of pure inner is still low. Therefore,

it is not good to choose samples with weakness < 128. From our experiment, we found

that the reduction rate for EGDIS is good enough. Therefore, we make POP, CL, WCL

and BWCL to select the same amount of samples as EGDIS. For POP, we ranked

samples based on weakness and select from low to high. Therefore, we can have a fair

comparison of their classification performance. The POP weakness distributions are

shown in Figure 4.11.



Chapter 4. Instance Selection Evaluation 29

(a) CIFAR10, 40000 samples (b) CIFAR20, 8028 samples

(c) CIFAR40, 16042 samples (d) CIFAR100, 40000 samples

Figure 4.11: POP weakness distributions for the 4 datasets. The very right column is

the number of pure inner samples. We can see that the heights are lower except for

CIFAR10.

For the five algorithms, we performed the selection process 12 times and reported

the average accuracy with the logistic regression model. The relative accuracy is

recorded in Table 4.1. We can see that the retention rate 1 is increasing with the classifi-

cation difficulty of the datasets. POP and EGDIS performed better with simpler dataset

such as CIFAR10. For EGDIS, it even achieved an accuracy increase. We think this

is because with selected boundary and dense samples only, the overfitting problem is

reduced. However, the performances of WCL and BWCL are more stable than EGDIS.

Their relative accuracy decreases slowly just like POP. Among all three classification

score based algorithms, BWCL is more capable of dealing with harder datasets. We

believe the reason is that BWCL can maintain the EGDIS selected boundary and the

WCL self-adaptive selection manner benefits the classification accuracy. The original

accuracies are recorded in Table A.1.

Datasets Retention Rate POP EGDIS CL WCL BWCL

CIFAR10 14.915% 100.00% 100.04% 99.74% 99.96% 99.91%

CIFAR20 16.67% 99.94% 99.01% 99.57% 99.31% 99.43%

CIFAR40 21.09% 99.64% 98.92% 99.09% 99.46% 99.63%

CIFAR100 31.48% 99.38% 97.78% 98.78% 99.46% 99.49%

Table 4.1: Logistic Regression test set relative accuracy by averaging 12 runs

We should notice that the average relative accuracy of BWCL is not the best value.
1Retention rate is the proportion of samples selected.
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We tuned the maximum proportion of boundary samples from 0.1 to 0.4 with step 0.1

and trained them three times each. In Figure 4.14(b), we reported the relative accuracy

in plot. It is clear that for simpler datasets, we should choose less hard examples. For

harder datasets, we should choose more boundary samples.

(a) Relative Accuracy (b) Relative Accuracy of BWCL by tuning

maximum boundary proportion

Figure 4.12: Relative Accuracy of data reduction algorithms

We took a further analysis for BWCL, by varying the proportion of samples se-

lected relative to the number of samples selected by EGDIS. We fixed the maximum

boundary proportion to 10%. The relative accuracy is reported in Figure 4.13. We

found that the quality of the extracted features are so good that the test set samples are

classified easily. This means that the results from logistic regression may not transfer

to CNN experiments well but this provides us with a good start.
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Figure 4.13: The BWCL test set accuracies. Averaged with 3 individual runs. The

threshold is 10%. Horizontal axis is the percentage of samples selected, in term of

EDGIS selected samples. Vertical axis is the accuracy score.

4.4 Experiment 4: Instance Selection for CNN

We trained the network DenseNet121 for three times, with learning rate 0.1 (150

epochs), 0.01 (100 epochs) and 0.001 (100 epochs). First, we trained the network with

the same selection configuration as logistic regression and reported the classification

accuracy in Table 4.2. The original accuracies are shown in Table A.3.

Datasets Retention Rate POP EGDIS CL WCL BWCL

CIFAR10 14.915% 86.80% 85.18% 86.71% 88.36% 86.75%

CIFAR20 16.67% 59.93% 61.43% 70.96% 69.34% 64.67%

CIFAR40 21.09% 63.99% 63.89% 75.77% 71.36% 70.65%

CIFAR100 31.48% 75.24% 73.74% 82.72% 83.23% 81.69%

Table 4.2: CNN test set relative accuracy

First of all, we found that POP and EGDIS selected samples are not suitable for a

neural network. The network cannot extract good features from these images thus the

relative accuracy is much lower than expected. Second, classification score based algo-

rithms can achieve relatively higher accuracy. In particular, for datasets with less per-

class samples, CL is better. For datasets with more per-class samples, WCL is better.
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However, BWCL performs worse than expected. We tested the BWCL performance

by tuning the maximum EGDIS boundary proportion. The results are shown in Figure

4.14(b). It seems that we should not set the proportion hyper-parameter larger than

10%. We believe this is because we evaluated the classification scores with NasNet-

Large, who has better extraction power than DenseNet121. The subsets contained too

many hard examples so the network cannot handle the training samples well. We pro-

posed another hypothesis that if the network could learn these hard samples well, then

it should be able to achieve higher classification accuracy based on the hard-example

mining method described in Chapter 2.

(a) Relative Accuracy (b) Relative Accuracy of BWCL by tuning

maximum boundary proportion

Figure 4.14: Relative Accuracy of data reduction algorithms

We took a closer look at the training curve of the first training stage to analysis

the convergence speed. For all datasets, CL and WCL can select samples to help

the network to converge faster. For BWCL, it can speed up the training process for

CIFAR100. However, for CIFAR20, BWCL may even slow down the convergence

speed. The discovery indicates that BWCL is much difficult to tune compared with CL

and WCL.
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(a) CIFAR10 (b) CIFAR100

(c) CIFAR20 (d) CIFAR40

Figure 4.15: The training trend of four datasets by selecting the same amount of sam-

ples as EGDIS, of the first 150 epochs

We took a closer look at the relative accuracy achieved by adjusting the proportion

of samples selected by these algorithms. It seems that WCL is better than CL and

BWCL when dealing with easier datasets such as CIFAR10. For other datasets, WCL

is more stable because the curves are close to straight lines. However, we still have

one more problem remains: how to set the right amount of samples to select as a

start? We noticed that for all our four datasets, by selecting 50% of the whole samples,

we can have a relative accuracy higher than 90%. A heuristic guide is to take 50% of

samples and consider it as 90% relative accuracy. Then use a linear model to decide the

number of samples to select. To make this more reliable, we took another experiment,

by analysing the relationship between validation accuracy history and final relative

accuracy. We reported the detail in the next Chapter.
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(a) CIFAR10 (b) CIFAR100

(c) CIFAR20 (d) CIFAR40

Figure 4.16: The relative accuracy to compare the performance of three algorithms with

different retention rate.

4.5 Conclusion

Although POP is fast than EGDIS, it not suitable for datasets with a large number

of feature dimensions. All five algorithms can achieve relative accuracies higher than

95% for logistic regression classifier because the extracted features are easy to classify.

For CNNs, CL and WCL perform better. In particular, WCL works well for datasets

with more samples. An unexpected result is that BWCL performs worse than CL and

WCL. A possible reason is that the selected hard samples are beyond the ability of

DenseNet121. Therefore, we suggest using the extracted features directly if the task

does not need original images. For cases when training the network is necessary, WCL

should be the first choice if the dataset has a large number of samples. For researchers

who want to explore a new network structure which may be able to learn from hard

samples, BWCL may be the right choice.
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Trade-off Framework

A useful trade-off framework should be able to help the researchers to decide how

much samples they need for a given relative accuracy such as BlinkML [32]. Since

Istrate et al. [20] shows that the CNN classification accuracies can be predicted from

training experiment histories, we should be able to build such a framework with enough

training experiment histories. In our project, we failed to collect enough data for the

instance selection algorithms because of the lack of computing resources. Therefore,

we tend to provide a general framework which is not dependent on a particular instance

selection algorithm. In this way, we got 240 samples for CIFAR10 and 88 samples for

CIFAR100. These training histories are from the experiment result in Chapter 4. Our

framework consists of three stages:

1. We first select the subset with a particular instance selection algorithm and train

the subset for 10 epochs.

2. Then the framework predicts whether this subset could achieve a relative accu-

racy above 90% or not.

3. If it can achieve above 90%, the framework predicts the relative accuracy.

According to the trainless accuracy predictor published by IBM [36], the validation

accuracy form the first few epochs of a smaller network are linearly related to the final

test accuracy. If their experiment is reliable, we could expect it works for relative

accuracy as well, for a particular dataset. Also, we want to know if this works for other

networks, such as DenseNet121 so we don’t need extra training task. We plotted the

results in Figure 5.3 to analyse this hypothesis. We did not use CIFAR20 and CIFAR40

history because we want to focus on large datasets. The result is not precisely linear

35
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in our case. The shape is more like part of an arc curve instead. However, if we zoom

in the region where relative accuracy is bigger than 0.9, the curve is more close to a

linear line, especially for CIFAR10.

(a) Epoch 5 (b) Epoch 7 (c) Epoch 9

Figure 5.1: The linear relationship between the validation accuracy and the final relative

accuracy achieved

We also explored the logit transformation method recommended by Kornblith et al.

[23]. This transformation scales the accuracy with the equation log( Validation Accuracy
1−Validation Accuracy).

In Figure 5.2, we can see that the relationship is very close to linear. This result is close

to the relative accuracy predictor that we want. However, a single linear model with

only one input is not precise enough for our framework. We discussed the framework

design in Section 5.1 in more detail.

(a) Epoch 5 (b) Epoch 7 (c) Epoch 9

Figure 5.2: The linear relationship between the validation accuracy and the final relative

accuracy achieved

5.1 Trade-off Framework Design

Although we discovered the linear relationship between the first few epoch validation

accuracies and the relative accuracy achieved in the end, the linear curve is still not

good enough. Therefore, we decided to use machine learning methods to get a better

prediction result. The sixteen features we chose to train with are:
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1. the retention rate

2. the subset validation accuracies for the first ten epochs

3. the whole dataset validation accuracies for the first five epochs

To summary, we trained two models individually as follows:

1. We first train a classifier to decide if the selected epochs can achieve at least 90%

relative accuracy or not.

2. We then train a regression model to predict the final relative accuracy for subsets

that achieved a relative accuracy higher than 90%.

5.1.1 Performance Evaluation

We split the history set into a training set and a test set with ratio 8:2. Our classifier

easily achieved 100% test accuracy for CIFAR10 and 94.44% for CIFAR100. The

relative accuracy predictor achieved a R2 score 0.9635 for CIFAR10 and 0.7920 for

CIFAR100. By selecting only samples with accuracy larger than 90%, we got good

linear results shown in Figure 5.3.

(a) CIFAR10 train (b) CIFAR10 test

(c) CIFAR100 train (d) CIFAR100 test

Figure 5.3: The linear model for CIFAR10 and CIFAR100 to predict the relative accuracy
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Although the predicted relative accuracy results are precise, we cannot guarantee

the framework works well for other datasets. The R2 score decreases for CIFAR100

compared with CIFAR10. We have the reason to believe the score would be lower for

the dataset which is harder to classify than CIFAR100. Also, since we do not have

plenty of samples, the regression model may not capture the actual patterns. We will

discuss possible improvements in Chapter 6.



Chapter 6

Conclusion and Future Work

We evaluated three existing instance selection algorithms, POP [34], EGDIS [34], CL

[16], and proposed two variations, WCL and BWCL, on CIFAR10 and CIFAR100 in

this project. We chose to use pre-trained network NasNetLarge [43] to extract image

features as a pre-processing step and compressed the feature vectors by training two

FC layers. We compared their selection preferences by visualising the selected samples

with t-SNE and tuned the hyper-parameters to analyse the algorithms further. Then we

compared the relative accuracies achieved by the logistic regression model as well as

the network DenseNet121. At the end of Chapter 4, we summarised the evaluation

results and gave suggestions to choose the proper one based on different situations. In

short, POP and EGDIS are suitable for machine learning algorithms such as logistic

regression. CL and WCL work better when retraining a network is necessary. BWCL is

a special one and it can be used to design new network structures. We also developed a

trade-off framework which can guide the researchers to choose the number of samples

to keep for CL, WCL and BWCL in particular because they need to know the number

of samples needed.

There are several limitations in our evaluation: we omitted the fine-tuning process

to extract better feature vectors. We did not have enough time to evaluate more datasets

and more CNN structures. Also, we did not evaluate the performance of other deep

learning tasks other than image classification. From our perspective, the pipeline we

described in Chapter 3 may be able to work with other vision datasets like video or

3D model if we could find a way to describe the samples with structured features.

However, we did not have any related knowledge when designing this project so we

will leave this challenge to the future.

In addition, we could extend the trade-off framework to handle different require-
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ments. For example, we may want to predict how many more samples needed to

achieve a required accuracy based on a given subset. According to the Google Data

Labelling Service [1], it costs 35$ to label 50,000 images for classification tasks. The

price goes to 870$ for segmentation tasks. It would cost a lot to build large datasets

with millions of images. If we could train the framework to do this task, we may save

the sponsor a huge amount of money. Moreover, our framework treats datasets individ-

ually. We have not found a way to handle different datasets with a single model even

with neural networks. The performance would be worse than the results described in

Chapter 5. Since TAPAS [20] has proved the feasibility to learn from training histories,

we should be able to build such a framework in the future.
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Appendix A

Training History

A.1 Feature Extraction for CIFAR20 and CIFAR40

(a) CIFAR20 (b) CIFAR40

Figure A.1: Extracted features visualisation with t-SNE algorithm
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A.2 Logistic Regression Original History

Datasets Retention Rate Whole POP EGDIS CL WCL BWCL

CIFAR10 14.915% 0.9258 0.9258 0.9262 0.9234 0.9254 0.9250

CIFAR20 16.67% 0.8825 0.8820 0.8738 0.8787 0.8764 0.8775

CIFAR40 21.09% 0.8159 0.8130 0.8071 0.8085 0.8115 0.8129

CIFAR100 31.48% 0.7444 0.7398 0.7279 0.7353 0.7404 0.7406

Table A.1: Logistic Regression test set accuracy by averaging 12 runs

Datasets Retention Rate 10% 20% 30% 40%

CIFAR10 14.915% 0.9253 0.9249 0.9246 0.9251

CIFAR20 16.67% 0.8783 0.8789 0.8758 0.8744

CIFAR40 21.09% 0.8125 0.8122 0.8134 0.8132

CIFAR100 31.48% 0.7401 0.7407 0.7410 0.7410

Table A.2: Logistic Regression BWCL test set accuracy by averaging 12 runs

A.3 CNN Original History

Datasets Retention Rate Whole POP EGDIS CL WCL BWCL

CIFAR10 14.915% 0.9522 0.8265 0.8111 0.8257 0.8414 0.8260

CIFAR20 16.67% 0.8660 0.5190 0.5320 0.6145 0.6005 0.5600

CIFAR40 21.09% 0.8233 0.5268 0.5260 0.6238 0.5875 0.5816

CIFAR100 31.48% 0.7842 0.5900 0.5783 0.6487 0.6527 0.6406

Table A.3: CNN test set accuracy

Datasets Retention Rate 10% 20% 30% 40%

CIFAR10 14.915% 0.8318 0.8405 0.8189 0.8128

CIFAR20 16.67% 0.5735 0.5790 0.5565 0.5310

CIFAR40 21.09% 0.5953 0.5913 0.5800 0.5600

CIFAR100 31.48% 0.6505 0.6363 0.6305 0.6450

Table A.4: BWCL test set accuracy


